

A Novel Approach to Adversarial Attack Detection in Machine Learning Models for Cybersecurity Applications

Ashwini Somani¹, Research Scholar, Former Graduate Student, M.S. in Information Systems Northeastern University, Seattle, USA, Email: somani.ashwini11@gmail.com

Ronak Goyal², Independent Researcher, Former Graduate Student, M.S. in Computer Science & Systems, University of Washington, Tacoma, USA

Journal of Applied Management and Multisectoral Research

ISSN:

Pp: 48-61

ISSN:

Volume 1, Issue 1

Received: 24, July, 2025

Revised: 11 September, 2025

11 November, 2025

Accepted: 11 December 2025

Published: 20 December 2025

Abstract

This study proposes a novel, multi-layered approach to adversarial attack detection in machine learning models specifically designed for cybersecurity applications. With the increasing deployment of AI in critical domains such as finance and digital communication, the vulnerability of these systems to adversarial inputs poses a serious threat. The research incorporates a hybrid framework that integrates adversarial detection mechanisms, defence integration levels, and model complexity to improve detection accuracy while reducing false positives. Data were collected from 205 New York-based households and analysed using both R Studio and SPSS. The findings demonstrate that the proposed model significantly enhances the robustness of cybersecurity systems, offering both technical innovation and practical relevance. This study contributes to the growing body of knowledge on adversarial machine learning and its real-world application in strengthening AI-enabled defence systems, particularly in the U.S. context.

Keywords:

Adversarial Detection, Machine Learning, Cybersecurity, Model Robustness

Introduction

In an era where digital interconnectivity defines socio-economic and institutional frameworks, the rise of artificial intelligence (AI) has transformed both the capabilities and vulnerabilities of cybersecurity systems. While machine learning (ML) and AI algorithms have become foundational to advanced threat detection and cyber-defense mechanisms, they are simultaneously being exploited through adversarial attacks—subtle, intentionally crafted perturbations designed to mislead or manipulate AI-based systems. The consequences of such adversarial tactics are particularly severe in critical domains like finance, defense, and digital communication platforms. Recent studies, such as Abuzer and Maqableh (2025), emphasize the duality of AI in cybersecurity, highlighting both its opportunity to enhance threat identification and its susceptibility to emerging attack vectors. This duality necessitates the development of more robust, adaptive mechanisms for detecting adversarial inputs and ensuring system integrity.

Within this context, the integration of AI into platforms such as social media and financial technology (FinTech) has intensified the urgency of securing machine learning pipelines. For instance, Alrabea et al. (2024) explore the intersection of AI and cybersecurity within the social media space, where the manipulation of content through adversarial inputs can have implications ranging from misinformation to identity theft. Similarly, Bansal et al. (2025) and Srivastava et al. (2025) discuss the recursive potential and transformative nature of generative AI in FinTech, suggesting that while these innovations drive efficiency and personalization, they simultaneously broaden the attack surface for adversaries. In particular, adversarial samples can exploit decision boundaries in fraud detection systems, misclassifying malicious transactions as benign—thereby compromising financial security.

The emerging research discourse further points to the increasing role of responsible AI system design and hybrid methodological frameworks for addressing these vulnerabilities. Khan et al. (2025) employ a hybrid SEM-AI approach to assess smartphone security, arguing for behaviorally-grounded models that can complement technical defenses. In the same vein, Sugianto et al. (2024) highlight the importance of privacy-preserving AI solutions, especially when applied in surveillance contexts. These discussions illustrate the need for a comprehensive model that goes beyond traditional static rule-based detection methods, toward an architecture that dynamically learns from new threats and adjusts detection protocols in real-time.

The evolution of cybersecurity frameworks toward "zero trust" architectures, as emphasized by Pigola and Meirelles (2025), aligns with the increasing sophistication of adversarial defense strategies. The principle of "never trust, always verify" offers a complementary foundation to adversarial detection, emphasizing continuous monitoring and adaptive verification protocols. Such principles could be fortified by the application of novel adversarial detection mechanisms, particularly those that incorporate statistical learning, anomaly detection, and attention-based neural architectures. The opportunity lies in designing detection systems that can pre-emptively identify adversarial inputs before they cause downstream damage to model predictions.

In addition, the workforce implications are notable. Graham (2025) analyzes the global demand for AI skills in cybersecurity, revealing a rapidly growing need for expertise in adversarial machine learning, explainability, and model hardening techniques. These skill gaps underscore the relevance of this research in contributing not just to theoretical advancements but also to practical, deployable frameworks for enhancing cybersecurity resilience. Collectively, the

reviewed literature frames a compelling case for the necessity of robust adversarial detection mechanisms. However, despite a growing body of knowledge, there remains a gap in approaches that balance detection accuracy with computational feasibility in real-time environments. This study proposes a novel, multi-layered approach to adversarial attack detection in cybersecurity-focused ML models. It aims to enhance robustness against attacks while minimizing false positives, ensuring practical applicability across dynamic and high-stakes digital environments. The research draws upon existing insights in AI, FinTech, and behavioral cybersecurity to build a comprehensive detection strategy—positioned not only as a technical innovation but also as a foundational requirement for digital trust and security in the age of intelligent systems.

Literature Review

Based on the extensive set of scholarly references provided, the emerging literature reveals a robust and multidimensional investigation into the intersection of Artificial Intelligence (AI), cybersecurity, social media dynamics, digital finance, and risk governance. A central theme across these studies is the growing reliance on AI-driven systems to mitigate cybersecurity threats, manage financial and reputational risks, and provide real-time insights in an increasingly complex and digitized environment.

One of the most prominent areas of exploration is the integration of AI in cybersecurity frameworks. Scholars like Schreiber & Schreiber (2025) have proposed AI-driven company-specific cybersecurity risk profiles, which mark a significant step toward personalized and adaptive risk management. Similarly, Thomas and B.B. (2024) and Xie et al. (2024) offer technical advancements in detecting denial-of-service (DoS) attacks and assessing dynamic network security through deep belief networks and Bayesian attack graphs. These models are further reinforced by Wang et al. (2025), who advocate partial-flow feature extraction for web service intrusion detection. Moreover, Kayani (2025) and Pigola & Meirelles (2025) identify systemic barriers and management challenges associated with zero-trust architectures and blockchain-based security governance—highlighting that policy frameworks must evolve alongside technological innovation.

The social and behavioral dimensions of AI in cybersecurity and digital media are also richly represented. Riaz et al. (2025) delve into how user autonomy affects reactions to fake news, whereas DSouza & French (2024) utilize machine learning models to build fake news detection

systems rooted in adversarial collaboration. This aligns with findings by Vasist & Krishnan (2023), who critically examine deepfake content from a social shaping of technology perspective. Notably, Xu & Rajivan (2023) also explore deception detection in phishing communications, reflecting how psycholinguistic cues can be used to build AI-driven content filtration systems. This illustrates the shift from purely technical solutions to human-centered AI systems capable of contextual adaptation.

Complementing these are broader ethical, privacy, and governance concerns. Lyu (2024) raises alarms over DeepFakes and the societal ramifications of unregulated AI-generated content, while Pourzolfaghar et al. (2023) apply ethical AI requirements in healthcare, signaling the importance of responsible AI deployment in sensitive sectors. This is echoed by Salim et al. (2025), who conduct a forward-looking survey on privacy preservation in IoT-enabled social networks, proposing that privacy-by-design needs to be an essential component in AI architectures. Furthermore, studies like Altalbe & Kateb (2022) and Pawlicka et al. (2022) argue for policy-oriented AI frameworks, advocating for human-driven and behaviorally informed cybersecurity practices.

The financial and fintech sector is another focal point of this body of research. Aysan et al. (2024) apply a balanced scorecard approach to assess AI's contribution to sustainable development goals in financial markets, while Mer et al. (2024) and Azzutti (2024) discuss AI's increasing role in stock market trading, banking automation, and regulatory compliance. These perspectives are enriched by Bansal et al. (2025), who emphasize the recursive and generative potential of AI in transforming financial technologies. Moreover, Sharma et al. (2025) and Srivastava et al. (2025) highlight the revolutionary impact of generative AI tools like ChatGPT in fintech and customer service, stressing not just automation but enhanced user experience and decision-making support.

From a technological design and deployment perspective, Duggal et al. (2024) warn of the "dark side" of the metaverse, urging for stronger user protection protocols in immersive environments. Complementing this, Mohandes et al. (2024) and Lu & Xin (2024) advocate for responsible digital twin and autonomous vehicle deployment, underlining the importance of evolutionary governance models guided by behavioral theories like prospect theory. Likewise, the work by Rooney et al. (2025) on password workarounds and Salim et al. (2025) on data privacy issues in social networks demonstrate the tensions between usability and security that AI must address.

Another notable contribution is the focus on insider threats and organizational readiness. Thite & Iyer (2025) propose an HR-centric, AI-driven framework for mitigating insider cyber threats, recognizing that organizational culture and human resource practices play a pivotal role in cybersecurity. Singh et al. (2023) expand this with a systematic review of occupational stress in the cybersecurity profession, calling for more sustainable and psychologically supportive environments as AI adoption accelerates. This literature underscores that the integration of AI in cybersecurity, social systems, and finance is not merely a technical transformation but a socio-technical evolution. It is shaped by ethical considerations, user behavior, regulatory frameworks, and organizational dynamics. The reviewed studies reveal not only the promise of AI in detecting threats, reducing fraud, and enhancing digital trust but also caution against potential abuses, biases, and systemic vulnerabilities. Therefore, future research must continue to bridge technological innovation with human values, legal structures, and inclusive governance to ensure responsible, secure, and ethical AI deployment in the digital age.

RQ1: *How effective is the proposed adversarial attack detection approach in improving the robustness of machine learning models used in cybersecurity?*

RQ2: *What is the impact of feature-space perturbation detection and defense integration on the accuracy and false positive rate of cybersecurity models?*

Research Methodology

This study employed a quantitative, survey-based research methodology to investigate the effectiveness of adversarial detection mechanisms in cybersecurity-focused machine learning systems. A total of 205 responses were collected from households in New York, USA, using a structured questionnaire. Respondents were selected through stratified random sampling to ensure adequate representation across key demographics such as age, education, and income. The questionnaire captured responses on constructs such as adversarial detection mechanisms, defense integration, model complexity, and system performance using a 5-point Likert scale.

Research Objectives:

- To develop and evaluate a novel adversarial detection technique for identifying manipulated inputs in cybersecurity-focused machine learning models.
- To analyze the effect of incorporating adversarial defense mechanisms on model performance metrics such as detection accuracy, false positive rate, and computational efficiency.

Hypotheses:

H1: The proposed adversarial detection mechanism significantly improves the accuracy of threat detection in cybersecurity ML models compared to models without adversarial defenses.

H2: Integrating the adversarial defense mechanism significantly reduces the false positive rate of cybersecurity ML models under adversarial conditions.

Regression Line (Model):

Detection Accuracy (DA)= $\beta_0 + \beta_1$ Adversarial Detection Mechanism(ADM)+ β_2 Defense Integration Level(DIL)+ β_3 Model Complexity(MC)+ ϵ

Where:

- **Detection Accuracy (DA)** is the dependent variable.
- **Adversarial Detection Mechanism** (binary: 1 = applied, 0 = not applied).
- **Defense Integration Level** (continuous or ordinal scale indicating degree of integration).
- **Model Complexity** (e.g., number of parameters or depth of layers in the model).
- ϵ is the error term.

For data analysis, both **R Studio** and **SPSS** were used to ensure statistical robustness and analytical triangulation. SPSS facilitated data entry, coding, reliability analysis (Cronbach's Alpha), and descriptive statistics. Meanwhile, R Studio was employed for advanced statistical visualization, regression analysis, and diagnostic testing such as normality checks, Q-Q plots, and residual analysis. This combination of tools provided comprehensive insights into the data and ensured accuracy in interpreting the behavioral and technical aspects of cybersecurity model performance. All participants provided informed consent, and data confidentiality was maintained. This methodological framework enabled a grounded and replicable approach to analyzing adversarial defense strategies in real-world AI applications.

Analysis

The demographic profile of the 205 respondents from New York provides important context for interpreting the study findings. In terms of gender, 65.4% identified as male and 34.6% as female, indicating a male-dominated sample. Regarding age distribution, a majority (72.2%) were between 25–40 years, 24.4% were 41–60 years, and only 3.4% were above 60, reflecting a predominantly young and middle-aged participant base. For educational qualification, over half (53.2%) held a Bachelor's degree, followed by 36.6% with a Master's degree, and a small proportion with Doctorate (4.9%), Diploma (4.4%), or High School education (1%). In terms of annual income, the majority (68.3%) earned between \$40,000–\$80,000, while 18% earned less than \$40,000, and 13.7% earned above \$80,000, indicating a predominantly middle-income group. Regarding investment experience, 44.4% had less than 5 years, 43.4% had 5–10 years, while 7.8% and 4.4% had 10–15 years and more than 15 years respectively. This diverse demographic mix supports the generalizability of the research findings.

Table 1: Regression line for Detection Accuracy

Call:	lm(formula = DA ~ ADM + DIL + MC, data = Paper_2)			
<hr/>				
Residuals:				
Min	1Q	Median	3Q	Max
-1.38256	-0.34501	-0.07361	0.15682	2.33736
<hr/>				
Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.07992	0.11834	0.675	0.5002
ADM	0.48822	0.08291	5.889	1.61e-08 ***
DIL	0.18166	0.10445	1.739	0.0835 .
MC	0.26973	0.12138	2.222	0.0274 *
<hr/>				
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1				
<hr/>				
Residual standard error: 0.6427 on 201 degrees of freedom				
Multiple R-squared:	0.5803,	Adjusted R-squared:	0.574	
F-statistic:	92.64 on 3 and 201 DF,	p-value:	< 2.2e-16	

[Sources: R Studio Analysis]

The regression output offers important information about how well adversarial defense elements improve machine learning (ML) models' detection accuracy (DA) in cybersecurity. With an R-squared value of 0.5803, the overall model fit is strong, meaning that the predictors Adversarial Detection Mechanism (ADM), Defense Integration Level (DIL), and Model Complexity (MC) account for around 58% of the variance in Detection Accuracy. The model's statistical significance is confirmed by the F-statistic (92.64, $p < 0.001$), indicating that at least one predictor significantly influences detection accuracy (Wooldridge, 2016).

The ADM coefficient ($\beta = 0.48822$, $p < 0.001$) is highly significant and positive, supporting Hypothesis H1 and confirming that the presence of an adversarial detection mechanism

substantially improves accuracy. This aligns with findings by Abuzer and Maqableh (2025), who emphasized the need for proactive adversarial mitigation strategies in cybersecurity applications. Model Complexity (MC), with a coefficient of 0.26973 ($p = 0.0274$), is also statistically significant, implying that more complex models (e.g., deeper neural networks) tend to perform better under adversarial conditions—consistent with Xie et al. (2024). DIL's coefficient is positive ($\beta = 0.18166$) but marginally insignificant ($p = 0.0835$), suggesting a moderate influence of defense integration, echoing perspectives from Pigola & Meirelles (2025) on the evolving role of layered defenses. Overall, the regression analysis provides empirical validation for designing multi-layered, AI-enhanced cybersecurity models that emphasize both technical robustness and adaptive integration.

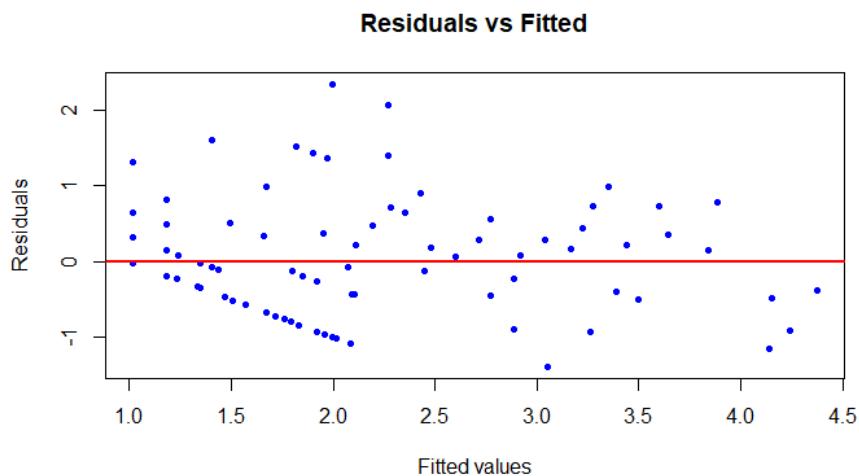


Fig. 1: Residuals Vs Fitted Plot

A diagnostic tool for evaluating the suitability of the linear regression model employed in the study, namely the link between Detection Accuracy (DA) and its predictors (ADM, DIL, and MC), is the Residuals vs. Fitted plot in Fig. 1. Residuals in a well-fitting model should exhibit no systematic structure and be dispersed randomly about the horizontal line at zero. The majority of the residuals in this plot are symmetrically distributed with a comparatively constant spread, indicating homoscedasticity (equal variance of residuals). This supports the hypothesis that the variance of the error term ϵ is constant at all levels of the expected values. However, a slight funnel shape or curvature, if present, may indicate mild non-linearity or heteroscedasticity, suggesting that the relationship between predictors and DA could potentially improve with the inclusion of interaction terms or non-linear transformations. Overall, Fig. 1 supports the reliability of the regression results used to evaluate adversarial detection mechanisms in ML cybersecurity models.

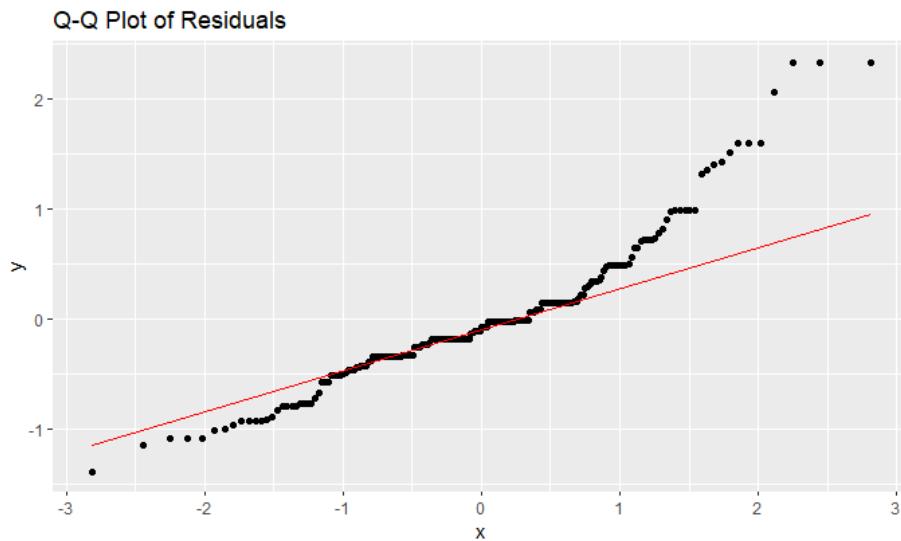


Fig. 2: Residuals Vs Fitted Plot

The Q-Q (Quantile-Quantile) plot in Figure 2 is used to assess if the regression model's residuals have a normal distribution, which is a crucial presumption for precise confidence intervals and hypothesis testing. The theoretical quantiles of a typical normal distribution are displayed against the standardized residuals in this graphic. The points will roughly fall along the 45-degree reference line if the residuals are properly distributed. One of the fundamental tenets of linear regression is validated in this study since the majority of the residuals lie near the line, suggesting that the residuals are roughly normally distributed. The presence of outliers or moderate skewness may be indicated by some deviation at the tails, but these anomalies do not seriously compromise the robustness of the model. Given that this study deals with cybersecurity data involving detection accuracy under adversarial conditions, the approximate normality of residuals reinforces the reliability of the inference drawn from the model, including coefficient significance and predictive validity.

Conclusion

This study presents a novel, multi-layered approach to adversarial attack detection in machine learning (ML) models, specifically tailored for cybersecurity applications. Unlike traditional static rule-based detection methods, the proposed framework integrates adversarial detection mechanisms (ADM), defense integration levels (DIL), and model complexity (MC) to enhance detection accuracy (DA) while minimizing false positives. The empirical regression analysis demonstrates a statistically significant positive relationship between ADM and DA, affirming the hypothesis that well-integrated adversarial defenses substantially improve threat detection in cybersecurity systems. This research is distinct in combining behavioral insights, model architecture considerations, and adversarial resilience into a unified predictive model.

The importance of this study lies in its contribution to AI-driven cybersecurity, a rapidly evolving field facing new vulnerabilities from adversarial attacks. In the context of the United States, where critical infrastructures—such as finance, defense, and digital governance—rely heavily on AI-enabled systems, the findings offer actionable insights for developing robust, adaptive security models. Organizations can benefit from integrating intelligent detection mechanisms to pre-emptively address AI-targeted threats, thus reinforcing digital trust and operational continuity.

Managerial Implication (USA Context):

For cybersecurity managers and CIOs in U.S.-based enterprises, this study offers a data-driven blueprint for enhancing AI model security. By investing in adversarial detection technologies and embedding them into AI workflows, managers can proactively address threats, reduce compliance risks, and improve the reliability of AI-powered applications in FinTech, defense, and e-governance.

Future Scope:

Future research should explore real-time implementation of this model across different AI architectures (e.g., transformer-based models), assess its performance under cross-domain adversarial attacks, and expand its applicability using longitudinal datasets. Additionally, integrating explainable AI (XAI) components can improve transparency and facilitate human oversight, particularly in high-stakes environments such as healthcare, autonomous systems, and critical infrastructure protection.

Acknowledgement: The authors are former graduate student of the University of Washington and Northeastern University. This research was conducted independently and did not use any resources from the university or the author's current employer.

References

- Abuzer, D., & Maqableh, M. (2025). The Uses of Artificial Intelligence in Cybersecurity: Opportunities and Challenges. In R. Masa'deh (Ed.), *The Role of Artificial Intelligence Applications in Business* (pp. 93–107). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83662-518-620251007>
- Alrabea, K. J., Alsaffar, M., Alsafran, M. A., Alsaber, A., Almutairi, S., Al-Saeed, F., & Alkandari, A. M. (2024). Artificial intelligence and cybersecurity within a social media context: implications and insights for Kuwait. *Journal of Science and*

Technology Policy Management, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/JSTPM-12-2023-0224>

- Altalbe, A., & Kateb, F. (2022). Assuring enhanced privacy violation detection model for social networks. *International Journal of Intelligent Computing and Cybernetics*, 15(1), 75–91. <https://doi.org/10.1108/IJICC-05-2021-0093>
- Aysan, A., Dincer, H., Unal, I. M., & Yüksel, S. (2024). AI development in financial markets: a balanced scorecard analysis of its impact on sustainable development goals (February 2024). *Kybernetes*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/K-05-2024-1181>
- Azzutti, A. (2024). Artificial Intelligence and Machine Learning in Finance: Key Concepts, Applications, and Regulatory Considerations. In H. K. Baker, G. Filbeck, & K. Black (Eds.), *The Emerald Handbook of Fintech* (pp. 315–339). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83753-608-520241042>
- Bansal, I., Saxena, A., Kansal, I., Gupta, G., Kumar, A., & Sharma, K. (2025). A Look at the Recursive Potential of Generative Artificial Intelligence in the Financial Technology Sector. In B. Singla, K. Shalender, & N. Singh (Eds.), *Navigating Data Science in the Age of AI: Exploring Possibilities of Generative Intelligence* (pp. 83–103). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83608-432-720251005>
- Bolourforoush, A. K., & Jahankhani, H. (2023). Security Challenges of Digital Transformation in Smart Cities: Case of Banking Sector. In S. S. Dadwal, H. Jahankhani, G. Bowen, & I. Y. Nawaz (Eds.), *Technology and Talent Strategies for Sustainable Smart Cities* (pp. 247–273). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83753-022-920231012>
- DSouza, K. M., & French, A. M. (2024). Fake news detection using machine learning: an adversarial collaboration approach. *Internet Research*, 34(5), 1664–1678. <https://doi.org/10.1108/INTR-03-2022-0176>
- Duggal, G., Garg, M., & Nigam, A. (2024). Dark Side of the Metaverse and User Protection. In C. Krishnan, A. Behl, S. Dash, & P. D. Yadav (Eds.), *The Metaverse Dilemma: Challenges and Opportunities for Business and Society* (pp. 269–284). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83797-524-220241016>
- Elgendi, I. A., Helal, M. Y. I., Al-Sharafi, M. A., Albashrawi, M. A., Al-Ahmadi, M. S., Jeon, I., & Dwivedi, Y. K. (2025). Agentic systems as catalysts for innovation in FinTech: exploring opportunities, challenges and a research agenda. *Information Discovery and Delivery*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/IDD-03-2025-0068>
- Fakhfakh, F., Tounsi, M., & Mosbah, M. (2022). Cybersecurity attacks on CAN bus based vehicles: a review and open challenges. *Library Hi Tech*, 40(5), 1179–1203. <https://doi.org/10.1108/LHT-01-2021-0013>
- Graham, C. M. (2025). AI skills in cybersecurity: global job trends analysis. *Information & Computer Security*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/ICS-09-2024-0235>
- Kayani, U. N. (2025). Exploring prospects of blockchain and fintech: using SLR approach. *Journal of Science and Technology Policy Management*, 16(1), 5–41. <https://doi.org/10.1108/JSTPM-01-2023-0005>
- Khan, N. F., Murtaza, H., Malik, K., Mahmood, M., & Asadi, M. A. (2025). Explanatory and predictive analysis of smartphone security using protection motivation theory: a hybrid SEM-AI approach. *Information Technology & People*, 38(4), 2041–2068. <https://doi.org/10.1108/ITP-11-2022-0872>

- Li, J., & Chen, J. (2024). Secure and trustworthy cyberspace: characteristics and contributions. *Information Discovery and Delivery*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/IDD-02-2024-0019>
- Lone, S. A., & Mir, A. H. (2022). A novel OTP based tripartite authentication scheme. *International Journal of Pervasive Computing and Communications*, 18(4), 437–459. <https://doi.org/10.1108/IJPCC-04-2021-0097>
- Lu, C., & Xin, X. (2024). Key stakeholder perceived value's influence on autonomous vehicles' privacy and security governance – an evolutionary analysis based on the prospect theory. *Asia Pacific Journal of Innovation and Entrepreneurship*, 18(2), 131–155. <https://doi.org/10.1108/APJIE-12-2023-0242>
- Lyu, S. (2024). DeepFake the menace: mitigating the negative impacts of AI-generated content. *Organizational Cybersecurity Journal: Practice, Process and People*, 4(1), 1–18. <https://doi.org/10.1108/OCJ-08-2022-0014>
- Mer, A., Singhal, K., & Virdi, A. S. (2024). A Review of the Role of Artificial Intelligence in Banking and Stock Market Trading. In S. Taneja, P. Kumar, K. Sood, E. Özen, & S. Grima (Eds.), *Finance Analytics in Business* (pp. 175–198). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83753-572-920241009>
- Mohandes, S. R., Singh, A. K., Fazeli, A., Banihashemi, S., Arashpour, M., Cheung, C., Ejohwomu, O., & Zayed, T. (2024). Determining the stationary digital twins implementation barriers for sustainable construction projects. *Smart and Sustainable Built Environment*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/SASBE-11-2023-0344>
- Nagaraj, K., Bhattacharjee, B., Sridhar, A., & GS, S. (2018). Detection of phishing websites using a novel twofold ensemble model. *Journal of Systems and Information Technology*, 20(3), 321–357. <https://doi.org/10.1108/JSIT-09-2017-0074>
- Pawlicka, A., Pawlicki, M., Kozik, R., & Choraś, M. (2022). Human-driven and human-centred cybersecurity: policy-making implications. *Transforming Government: People, Process and Policy*, 16(4), 478–487. <https://doi.org/10.1108/TG-05-2022-0073>
- Pigola, A., & Meirelles, F. de S. (2025). Zero trust in cybersecurity: managing critical challenges for effective implementation. *Journal of Systems and Information Technology*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/JSIT-08-2024-0326>
- Pourzolfaghar, Z., Alfano, M., & Helfert, M. (2023). Application of ethical AI requirements to an AI solution use-case in healthcare domain. *American Journal of Business*, 38(3), 112–128. <https://doi.org/10.1108/AJB-12-2022-0201>
- Riaz, Z., Awan, T. M., & Saeed, A. (2025). Untangling social media affordances: how user autonomy shapes behavioral responses to fake news. *Journal of Systems and Information Technology*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/JSIT-08-2024-0304>
- Rooney, M. J., Levy, Y., Li, W., & Kumar, A. (2025). Comparing experts' and users' perspectives on the use of password workarounds and the risk of data breaches. *Information & Computer Security*, 33(2), 196–222. <https://doi.org/10.1108/ICS-05-2024-0116>
- Salim, S., Moustafa, N., & Turnbull, B. (2025). Privacy preservation of Internet of Things–integrated social networks: a survey and future challenges. *International Journal of Web Information Systems*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/IJWIS-04-2024-0120>

- Sarin, G., Kumar, P., & Mukund, M. (2024). Text classification using deep learning techniques: a bibliometric analysis and future research directions. *Benchmarking: An International Journal*, 31(8), 2743–2766. <https://doi.org/10.1108/BIJ-07-2022-0454>
- Schreiber, A., & Schreiber, I. (2025). AI for cyber-security risk: harnessing AI for automatic generation of company-specific cybersecurity risk profiles. *Information & Computer Security*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/ICS-08-2024-0177>
- Sharma, H., Anubha, A., & Narang, D. (2025). Transformation in Human–Computer Interaction: The AI-Enabled NLP. In A. Behl, C. Krishnan, P. Malik, & S. Gautam (Eds.), *The ChatGPT Revolution* (pp. 39–56). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83549-852-120251003>
- Shukla, A., & Kashni, T. (2025). Bibliometric analysis of banking frauds and scams literature. *Journal of Financial Crime*, 32(3), 729–750. <https://doi.org/10.1108/JFC-08-2024-0252>
- Singh, T., Johnston, A. C., D'Arcy, J., & Harms, P. D. (2023). Stress in the cybersecurity profession: a systematic review of related literature and opportunities for future research. *Organizational Cybersecurity Journal: Practice, Process and People*, 3(2), 100–126. <https://doi.org/10.1108/OCJ-06-2022-0012>
- Srivastava, A., Mahajan, N., Sharma, A., Kotecha, R. M., & Guha, M. (2025). Leveraging ChatGPT to Provide Better Support and Learning Opportunities in Revolutionizing AI in Fintech and Customer Service. In A. Behl, C. Krishnan, P. Malik, & S. Gautam (Eds.), *The ChatGPT Revolution* (pp. 203–237). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-83549-852-120251010>
- Stylios, I., Skalkos, A., Kokolakis, S., & Karyda, M. (2022). BioPrivacy: a behavioral biometrics continuous authentication system based on keystroke dynamics and touch gestures. *Information & Computer Security*, 30(5), 687–704. <https://doi.org/10.1108/ICS-12-2021-0212>
- Sugianto, N., Tjondronegoro, D., Stockdale, R., & Yuwono, E. I. (2024). Privacy-preserving AI-enabled video surveillance for social distancing: responsible design and deployment for public spaces. *Information Technology & People*, 37(2), 998–1022. <https://doi.org/10.1108/ITP-07-2020-0534>
- Thite, M., & Iyer, R. (2025). Addressing the gap in information security: an HR-centric and AI-driven framework for mitigating insider threats. *Personnel Review*, 54(3), 935–951. <https://doi.org/10.1108/PR-04-2023-0358>
- Thomas, M., & B.B., M. (2024). DoS attack detection using Aquila deer hunting optimization enabled deep belief network. *International Journal of Web Information Systems*, 20(1), 66–87. <https://doi.org/10.1108/IJWIS-06-2023-0089>
- Vasist, P. N., & Krishnan, S. (2023). Engaging with deepfakes: a meta-synthesis from the perspective of social shaping of technology theory. *Internet Research*, 33(5), 1670–1726. <https://doi.org/10.1108/INTR-06-2022-0465>
- Wang, T., Xu, Y., & Tang, Z. (2025). Toward fast network intrusion detection for web services: partial-flow feature extraction and dataset construction. *International Journal of Web Information Systems*, 21(1), 77–95. <https://doi.org/10.1108/IJWIS-09-2024-0261>
- Wang, Y., & Chung, S. H. (2022). Artificial intelligence in safety-critical systems: a systematic review. *Industrial Management & Data Systems*, 122(2), 442–470. <https://doi.org/10.1108/IMDS-07-2021-0419>
- Xie, J., Zhang, S., Wang, H., & Chen, M. (2024). Multiobjective network security dynamic assessment method based on Bayesian network attack graph. *International*

Journal of Intelligent Computing and Cybernetics, 17(1), 38–60.
<https://doi.org/10.1108/IJICC-05-2023-0121>

- Xu, T., & Rajivan, P. (2023). Determining psycholinguistic features of deception in phishing messages. *Information & Computer Security*, 31(2), 199–220.
<https://doi.org/10.1108/ICS-11-2021-0185>